Cho một số nguyên dương \(N\) hãy đếm xem có bao nhiêu bộ số thỏa mãn điều kiện sau:
- \(1 \le A \le B \le N\)
- \(A \times B\) là số chẵn
Dữ liệu vào: Một số nguyên dương \(N (N \le 10^9) \).
Dữ liệu ra: Một số duy nhất là số bộ số tìm được.
Input
5
Output
9
Giải thích
9 bộ số thỏa mãn là: (1,2), (1,4), (2,2), (2,3), (2,4), (2,5), (3,4), (4,4), (4,5)
Nhận xét
sus
include<bits/stdc++.h>
using namespace std;
int main(){ ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0); long long n,dem = 0,even = 0,odd = 0; cin >> n; for(long long i = 1;i<=n;i++){ for(long long j = i;j<=n;j++){ if(i*j%2==0){ if(i%2==0) even++; else odd++; dem++; } } } cout << dem << endl << even << " " << odd <<endl; return 0; }
include <bits/stdc++.h>
define ll long long
using namespace std;
vector<ll> P(10000000,0);
void Sang(){ for(int i=2;ii<=10000000;i++){ if(P[i]==0){ for(int j=ii;j<=10000000;j+=i){ P[j]=i; } } } for(int i=2;i<=10000000;i++) if(P[i]==0) P[i]=i; } unordered_map <ll,ll> mp; void Pt(ll i){ while(i>1){ mp[P[i]]++; i/=P[i]; } for(auto c:mp) cout << c.first << " " << c.second << endl; } int main(){ // ll n,m,tich1=1,tich2=1;cin >> n >> m; // ll hs= 1e9+7; // for(int i=0;i<n;i++){ // ll tmp;cin >> tmp; // tich1=((tich1%hstmp%hs)%hs); // if(tich1 <0) tich1+=hs; // } // for(int i=0;i<m;i++){ // ll tmp;cin >> tmp; // tich2=((tich2%hstmp%hs)%hs); // if(tich2 <0) tich2+=hs;
// } // ll ans=__gcd(tich1,tich2) ; // cout << ans; Sang(); Pt(1253); return 0; }
include<bits/stdc++.h>
using namespace std;
int main(){ print("Dung co gay coi")
}